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The link between autocovariance and spectrum is given by the Wiener—Khinchin
theorem;
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Example: Monthly discharges
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White noise
T T

autocorrelation of residuals

Always remove the mean of the signal when
calculating ACF. Not removing the mean will 08
introduce a spurious correlation, which by no

0.6
means should be interpreted as long term 0al
memory of the process!
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1. ACF Captures Only Linear Dependence

*The ACF measures linear correlations between time-
lagged values.

*However, some processes exhibit nonlinear
dependencies that the ACF cannot detect.

*Example: A chaotic system can have low or zero
autocorrelation but still exhibit long-term memory
through deterministic structures. The system is still
unpredictable due to sensitivity to initial conditions.

2. ACF Does Not Always Capture Long-Range
Dependence

*Some processes (e.g., fractional Brownian motion
(fBm) with H>0.5) have long-range dependence
where past values influence the future over very long
time horizons.

*ACF might decay slowly in these cases, but other
methods (e.g., the Hurst exponent) are needed to
properly characterize the memory.

c Pr-L I

0.

[¢e]

0.

(D

0.

\.

0.

]

0.

(J'I

0.

.;;

0.

CA)

0.

l\)

0.1r

Loglstlc map

"M ' M ‘\ H w\ M w‘
Mu\ MJH \‘ “\‘\ ‘\\ H “\‘ ‘\M\
\M‘N\‘

| MH
"‘H“W‘\‘

NI ‘“ I
|| “H ‘\‘\
. \Mm \M “‘ ‘\ ‘ \w
H‘U‘ ‘g i
‘\ \“‘ ‘\

' ‘\ '

NN

| ‘\ ‘\ ‘\ \\ ‘\ |
m“\\‘ “ “ \\
[N ‘\M‘ Il ww‘\ |

|
“ | H \

|

H“\“‘\ ‘u\
H“\M\“\Hw
it WM
‘/M“‘ ‘3 \*

|
d

\\*

0 20 40 60

80

100

0.8r

0.6

0.4r

0.2r

-0.2

-0.4

>

PLATEFORME DE CONSTRUCTIONS HYDRAULIQUES

autocorrelation of logistic map

* Stochastic processes may show H>0.5 at short range and
asymptotically yet tend to H=0.5. This means that the
Hurst analysis associating short or long range memory is
a meaningful concept only in an asymptotic sense.



Autocorrelation for stationary and non-stationary processes
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3. Stationary vs. Non-Stationary Processes ‘ Henose 1 S
*For stationary processes, ACF is more useful s 0sl

because memory effects do not change over time.

*For non-stationary processes (like a random walk), |
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misleading as a memory measure. 02l
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The moving average is a smoothing operation (low-pass filter)
which can be used to extract the trend underlying time series.
The weighted moving average is a mathematical mean centered
(symmetric or non) and operated over a number of points
before and after the centre one. Then the centre is moved and
the mean recalculated (it results a sort of convolution). MA may
introduce a lag shift in the smoothed data

M
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The exponential smoothing is a technique for smoothing fluctuations in a time series based on a weighted average of
past values, where the weighting functions are indeed exponential functions of the lag.

Comparison between MA and ES methods
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As for the moving average, the exponential smoothing will introduce a lag shift in the data, whose correction is not
obvious (cfr., voice comments)
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An estimator of a population statistics is biased when its sample value is different from the
population value. Several corrections have been proposed. Such methods often use a
function of the sample size N as correction factor

A _ I‘,N + ] For autocorrelated data (r #0), the bias is downward, i.e. sample statistics
P N—4 are smaller than the population ones.
(N—1) §2 For uncorrelated data, the sample variance is an unbiased estimator of the
gi= N—K population variance. Otherwise, the variance can be corrected as stated

N1 —p)—2p, (1 =p¥
K= Al fIlV(l — /I;l)g] pi)] Correction for the sample variance
1
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Statistical tests and transformation to normal flI?:.

m

Y
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Statistical tests exist in both parametric and
non-parametric forms. In hydrology some
important tests are

- Determining the significance of trends, e.g. t-
student with linear regression model, Mann-

Kendall non parametric

- Determining the significance of shift or jumps,
e.g., t-Test for shift in the mean, Mann-Whitney

- Determining the presence of seasonality, t- test or
the extended one-way analysis of variance

- Determining the degree of normality, e.g. the Chi-
square, the Kolmogorov-Smirnov test

L I
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A widely used technique in hydrology to
obtain normally distribute data is
through variable transformation. Two
most popular ones are:

Logarithmic transformation of a lognormally
distributed data x;

y,=log (x, —¢)

Power transformation

Y= (xl _ C)b
Box-Cox transformation
(xi— 1D a#0

A. —
In(x) #4=0

Vi =1




Take home message from these three lectures ‘m;_'.
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« L6.1 Ican explain the differences between the the type of data sequences (e.g., continuous, discrete, etc.)
e L6.1 I|understand and can explain the effects of shifts, trends, periodicity, etc.
e L6.1 |understand the meaning of serial and cross correlation in data sequences

« L6.2 |know how to calculate basic moment statistics for the sample and the population

* L6.2 |know how to calculate the serial (auto)correlation of data sequences and understand its meaning
e L6.2 |know how to standardize a time series and what does this mean

e L6.2 Ican explain how partitioning works and | know what to do at each step

* L6.3 |know how to calculate seasonal sample statistics

 L6.3 Ican explain (but do not need to remember) the relationship between time and frequency domains

e L6.3 |know how to perform a moving average and can write the general formula

e L6.3 |know how to perform and write the relationship of the exponential smoothing

« L6.3 lunderstood (but not need to remember) formulas to correct for bias and transform to normal a given data
series
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